Realizability of pomsets via communicating automata

Roberto Guanciale
KTH Royal Institute of Technology, Sweden (robertog@kth.se)

Emilio Tuosto
Department of Informatics, University of Leicester, UK (emilio@le.ac.uk)

Pomsets are a model of concurrent computations introduced by Pratt. They can provide a syntax-oblivious description of semantics of coordination models based on asynchronous message-passing, such as Message Sequence Charts (MSCs). In this paper, we study conditions that ensure a specification expressed as a set of pomsets can be faithfully realized via communicating automata.

Our main contributions are (i) the definition of a realizability condition accounting for flexible termination, (ii) verification conditions for global specifications with “multi-threaded” participants, and (iii) the definition of realizability conditions that can be decided directly over pomsets. A positive by-product of our approach is the efficiency gain obtained when restricting to specific classes of choreographies characterisable in term of behavioural types.

1 Introduction

Asynchronous message-passing is a widely used paradigm to specify, design, and implement communication-centric applications or systems. This paradigm has been used at different abstraction levels, including formal models (e.g. π-calculus [21, 17] and communicating automata [6]), specification languages (e.g. message-sequence charts (MSCs) [22]), choreography languages (e.g. global calculus [7] and WS-CDL [24]), programming languages (e.g. actor models for Erlang, Scala, and Go).

Choreographic approaches are gaining momentum to handle the complexity of distributed systems [14]. These frameworks envisage two views: a global specification and a local one. The former defines the order and constraints under which messages are sent and received, while the local view defines the behavior of each participant. The composition of local participants should respect the global specification. In this setting, the realizability of the global specifications becomes a concern since there could be some specifications that are impossible to implement using the local views in a given communication model.

We propose a general semantic representation based on partially ordered multisets (pomsets) [19], capable of specifying global behaviors and analyze their realizability in terms of asynchronous message-passing. Our framework assumes asynchronous point-to-point communications and features a notion of realizability that

1. rules out systems where some participants cannot ascertain termination
2. admits multi-threaded participants
3. allows us to define syntax-oblivious conditions
4. can be decided by an analysis of the partial orders of communication events.

These features have several practical advantages. Indeed, by (1), we admit systems where participants may get stuck on some messages, only if that is specified in the global model. The use of multi-threaded participants (2) makes our framework more expressive than existing ones. Syntax independent conditions (3) are applicable to different global models. Finally, (4) enables the identification of design errors in global models rather than in execution traces where they are harder to analyse.
2 Pomsets and message-sequence charts

We collect the main definitions needed in the rest of the paper. The material of this section is not an
original contribution\(^1\) and it is presented only to make the paper self-contained borrowing and combining
definitions and notations from \([8, 1, 13, 6]\).

Let \(P\) be a set of participants (ranged over by \(A, B, \text{etc.}\)), \(M\) a set (of types) of messages (ranged
over by \(m, x, \text{etc.}\)). We take \(P\) and \(M\) disjoint. Participants coordinate with each other by exchanging
messages over communication channels, that are elements of the set \(C = (P \times P) \setminus \{(A, A) \mid A \in P\}\) and
we abbreviate \((A, B) \in C\) as \(AB\). The set of labels \(L\) is defined by

\[
L = L^1 \cup L^2 \quad \text{where} \quad L^1 = C \times \{!\} \times M \quad \text{and} \quad L^2 = C \times \{?\} \times M
\]

The elements of \(L^1\) and \(L^2\), outputs and inputs, respectively represent sending and receiving actions; we
shorten \((AB, !, m)\) as \(AB!m\) and \((AB, ?, m)\) as \(AB?m\) and let \(l, l', \ldots\) range over \(L\). The subject of an
action is defined by

\[
\text{sbj}(AB!m) = A \quad \text{(the sender)} \quad \text{and} \quad \text{sbj}(AB?m) = B \quad \text{(the receiver)}
\]

We borrow the formalisation of partially-ordered multi-set of \([8]\).

Definition 1 (Lposets). A labelled partially-ordered set (lposet) is a triple \((E, \le, \lambda)\), with \(E\) a set of
events, \(\le \subseteq E \times E\) a reflexive, anti-symmetric, and transitive relation on \(E\), and \(\lambda : E \to L\) a labelling
function.

Intuitively, \(\le\) represents causality; for \(e \neq e'\), if \(e \le e'\) and both events occur then \(e'\) is caused by \(e\).
Note that \(\lambda\) is not required to be injective: for \(e \neq e' \in E\), \(\lambda(e) = \lambda(e')\) means that \(e\) and \(e'\) model different
occurrences of the same action.

Definition 2 (Pomsets). Two lposets \((E, \le, \lambda)\) and \((E', \le', \lambda')\) are isomorphic if there is a bijection
\(\phi : E \to E'\) such that \(e \le e' \iff \phi(e) \le' \phi(e')\) and \(\lambda = \lambda' \circ \phi\). A partially-ordered multi-set (of actions),
pomset for short, is an isomorphism class of lposets.

Using pomsets in place of lposets allows us to abstract away from the names of events in \(E\). In the
following, \([E, \le, \lambda]\) denotes the isomorphism class of \((E, \le, \lambda)\), symbols \(r, r', \ldots\) (resp. \(R, R', \ldots\)) range
over (resp. sets of) pomsets, and we assume that any \(r\) contains at least one lposet which will possibly
be referred to as \((E_r, \le_r, \lambda_r)\). An event \(e\) is an immediate predecessor of an event \(e'\) in a pomset \(r\) if
\(e \neq e'\), \(e \le_r e'\), and for all \(e'' \in E_r\) such that \(e \le_r e'' \le_r e'\) either \(e = e''\) or \(e' = e''\). If \(e\) is an immediate
predecessor of \(e'\) in \(r\) then \(e'\) is an immediate successor of \(e\) in \(r\). We will represent pomsets as the Hasse
diagram of the immediate predecessor relation as done in the examples of Fig. 1. For instance, in the
pomset \(r_1\), the input event of \(B\) from \(A\) immediately precedes the input of \(B\) from \(D\) while the events
with those labels are in the reversed order in \(r_2\).

\(^{1}\)Except for the different definition of accepting states of communicating automata.
Definition 3 (Projection of pomsets). The projection \(r \mid_A \) of a pomset \(r \) on a participant \(A \in \mathcal{P} \) is obtained by restricting \(r \) to the events having subject \(A \): formally \(r \mid_A = \{ e \in \mathcal{E}_r \mid \text{subj}(e) = A \} \). Formally, \(\lambda_r \mid_{\mathcal{E}_r} \) where \(\mathcal{E}_r = \{ e \in \mathcal{E} \mid \text{sbj}(\lambda_r(e)) = A \} \).

Pomsets are a quite expressive model of global views of choreographies \[23\]; in fact, MSCs can be defined as a subclass of pomsets.

Definition 4 (Well-formedness, completeness, and MSCs). A pomset \(r \) over \(\mathcal{L} \) is well-formed if for every event \(e \in \mathcal{E}_r \):

1. if \(\lambda_r(e) = AB!m \), there is at most one \(e' \in \mathcal{E}_r \) immediate successor of \(e \) in \(r \) with \(\lambda_r(e') = AB?m \) (and, if such \(e' \) exists, we say that \(e \) and \(e' \) match each other)
2. if \(\lambda_r(e) = AB?m \), there exists exactly one \(e' \in \mathcal{E}_r \) immediate predecessor of \(e \) in \(r \) with \(\lambda_r(e') = AB!m \)
3. for each \(e' \in \mathcal{E}_r \), if \(e \) is an immediate predecessor of \(e' \) and \(\text{sbj}(\lambda_r(e)) \neq \text{sbj}(\lambda_r(e')) \) then \(e \) and \(e' \) are matching output and input events respectively
4. for each \(e' \neq e \in \mathcal{E}_r \) with \(\lambda_r(e) = \lambda_r(e') = AB!m \), and for all \(e, e' \in \mathcal{E}_r \) immediate successors in \(r \) of \(e \) and of \(e' \) respectively if \(\lambda_r(e) = \lambda_r(e') = AB?m \) and \(e \leq_r e' \) then \(e' \leq_r e \)

Pomset \(r \) is complete if there is no send event in \(\mathcal{E}_r \) without a matching receive event. A message-sequence chart is a well-formed and complete pomset \(r \) such that \(\leq_r \) is a total order for every \(A \in \mathcal{P} \).

Well-formed pomsets permit to represent inter-participant concurrency by not imposing orders of events belonging to different participants that are not matching communications. Also, well-formed pomsets allow intra-participant concurrency (i.e. multi-threaded participants) since they do not require \(\leq_r \) to be totally ordered. MSCs are obtained by restricting participants to be single-threaded. The pomsets in Fig. 1 are indeed MSCs describing different orders of the same set of events. The total orders yielded by the vertical arrows correspond to the projections of the pomsets on participants; these projections are obtained by restricting \(r \mid_{\mathcal{P}_i} \) and \(r \mid_{\mathcal{P}_k} \) to the events having the same subject. More precisely, the projection on one of the participants consists of the \(i \)-th vertical arrow where \(i \) is the alphabetical order of the participant (e.g., the projection of \(C \) is the third arrow). The behaviour of \(A \) (and \(D \)) is the same in both MSCs: \(A \) (resp. \(D \)) first sends message \(x \) (resp. \(y \)) to \(B \) and then to \(C \). The behaviour of \(B \) (and \(C \)) differs: in \(r \mid_{\mathcal{P}_i} \), \(B \) first receives the message from \(A \) then the one from \(D \), in \(r \mid_{\mathcal{P}_k} \), \(B \) has the same interactions but in opposite order. Likewise for \(C \).

\[\text{Figure 1: Two pomsets}\]

Pomsets can also be used to give semantics to the composition of MSCs; see \[13\].
To handle choices we use sets of pomsets \(R \) so that each possible branch is represented by a pomset \(r \in R \) representing the causal dependencies of the communication actions of the branch. For instance, the set \(R[1] = \{ r[1], r[2] \} \) represents a choice between the fact that \(B \) may receive messages \(x \) and \(y \) in any order.

A natural question to ask is:

“is it possible to realize \(R[1] \) with asynchronously communicating local views?”

The next section answers this question for pomsets similarly to what done in [1] where closure conditions for MSCs where identified.

3 Realizability and termination soundness of pomsets

Hereafter we assume all structures, including languages, words and pomsets, to be finite. Given a pomset \(r \), a **linearization** of \(r \) is a string in \(L^* \) obtained by considering a total ordering of the events \(E_r \) that is consistent with the partial order \(\leq_r \), and then replacing each event by its label. More precisely, let \(|E_r| \) be the cardinality of \(E_r \), a word \(w = \lambda_r(e_1) \ldots \lambda_r(e_{|E_r|}) \) is a linearization of a pomset \(r \) if \(e_1 \leq e_j \) is a permutation that totally orders the events in \(E_r \) so that if \(e_i \leq e_j \) then \(i \leq j \). For a pomset \(r \), define \(\mathbb{L}(r) \) to be the set of all linearizations of \(r \). A word \(w \) over \(L \) is well-formed (resp. complete) if it is the linearization of a well-formed (resp. complete) pomset. Hereafter, for a word \(w \in L^* \), \(w \rightarrow A \) denotes the projection of \(w \) that retains only those events where participant \(A \in \mathcal{P} \) is the subject. Operation \(\rightarrow A \) acts element-wise on languages over \(L \). The **language** of a set of pomsets \(R \) is simply defined as \(\mathcal{L}(R) = \bigcup_{r \in R} \mathcal{L}(r) \).

Local views are often conveniently modelled in terms of communicating automata of some sort. An **A-communicating finite state machine** (A-CFSM) \(M = (Q, q_0, F, \rightarrow) \) is a finite-state automaton on the alphabet \(L \) such that, \(q_0 \in Q \) is the initial state, \(F \subseteq Q \) are the accepting states, and for each \(q \rightarrow q' \) holds \(\text{subj}(i) = A \). A (communicating) system is a map \(S = (M_A)_{A \in \mathcal{P}} \) assigning an A-CFSM \(M_A \) to each participant \(A \in \mathcal{P} \). For all \(A \neq B \in \mathcal{P} \), we shall use an unbounded multiset \(b_{AB} \) where \(M_A \) puts the message to \(M_B \) and from which \(M_B \) consumes the messages from \(M_A \).

The semantics of communicating systems is defined in terms of transition relations between configurations which keep track of the state of each machine and the content of each buffer. Let \(S = (M_A)_{A \in \mathcal{P}} \) be a communicating system. A **configuration** of \(S \) is a pair \(s = (\vec{q}; \vec{b}) \) where \(\vec{q} = (q_A)_{A \in \mathcal{P}} \) maps each participant \(A \) to its local state \(q_A \in Q_A \) and \(\vec{b} = (b_{AB})_{A \in \mathcal{P}, B \in \mathcal{C}} \) where the buffer \(b_{AB} : M \rightarrow \mathbb{N} \) is a map assigning the number of occurrences of each message; state \(q_A \) keeps track of the state of the automaton \(M_A \) and buffer \(b_{AB} \) keeps track of the messages sent from \(A \) to \(B \). The **initial** configuration \(s_0 \) is the one where, for all \(A \in \mathcal{P} \), \(q_A \) is the initial state of the corresponding CFSM and all buffers are empty. Given two configurations \(s = (\vec{q}; \vec{b}) \) and \(s' = (\vec{q}'; \vec{b}') \), relation \(s \rightarrow A s' \) holds if there is a message \(m \in M \) such that either (1) or (2) below holds:

1. \(l = AB \rightarrow m \) and \(q_A \rightarrow q'_A \) and
 a. \(q'_C = q_C \) for all \(C \neq A \in \mathcal{P} \) and
 b. \(b'_{AB} = b_{AB}[m \mapsto b_{AB}(m) + 1] \)
2. \(l = AB \leftarrow m \) and \(q_B \rightarrow q'_B \) and
 a. \(q'_C = q_C \) for all \(C \neq B \in \mathcal{P} \) and
 b. \(b'_{AB} = b_{AB}[m \mapsto b_{AB}(m) - 1] \)

where, \(f[x \mapsto y] \) is the usual notation for the updating of a function \(f \) in a point \(x \) of its domain with a value \(y \). Condition (1) puts \(m \) on channel \(AB \), while (2) gets \(m \) from channel \(AB \) by simply updating the number of occurrences of \(m \) in the buffer \(b_{AB} \). In both cases, any machine or buffer not involved in the transition is left unchanged in the new configuration \(s' \).
The automata model adopted in [1] is a slight variant of communicating-finite state machines (CFSMs) [6]. The two models have the same definition of automata; they differ in how communication is attained, but are equivalent up to internal transitions (which in [1] have been used to simplify proofs). We used the definition of CFMS in [6] to encompass accepting states (necessary to define our more flexible notion of correct termination). Another minor deviation from the definition of CFMS introduced in [6] is that buffers become multisets in [1] while in [6] they follow a FIFO policy.

Given a communicating system S, a configuration \(s = (q; \bar{b}) \) of S is (i) accepting if all buffers in \(\bar{b} \) are empty and the local state \(q(A) \) of each participant A is accepting while (ii) s is a deadlock if no accepting configuration is reachable from s. We can then define the language of S as the set \(\mathbb{L}(S) \in L^* \) of sequences \(l_0 \ldots l_{n-1} \) such that \(s_0 \xrightarrow{l_0} \ldots \xrightarrow{l_{n-1}} s_n \) and \(s_n \) is an accepting configuration.

The notion of realizability and sound termination (cf. Definitions 5 and 6 below) are given in terms of the relation between the language of the global view and the one of a system of local views “implementing” it. Our notion of realizability considers languages over \(L \) as sets of traces of the distributed executions of some CFMSs, analogously to [1].

Definition 5 (Realizability). A language \(L \subseteq L^* \) is weakly realizable if there is a communicating system S such that \(L = \mathbb{L}(S) \); when S is deadlock-free we say that \(L \) is safely realizable. A set of pomsets \(R \) is weakly (resp. safely) realizable if \(\mathbb{L}(R) \) is weakly (resp. safely) realizable.

The notion of realizability is meaningful when pomsets are well-formed and complete, namely when they yield a proper match among receive and send events.

In general, safe realizability is not enough to rule out undesirable designs. In fact, it admits systems where participants cannot ascertain termination and may be left waiting forever for some messages. This may lead non-terminating participants to unnecessarily lock resources once the coordination is completed. We explain this considering Fig. 2 which can be interpreted as follows. Participant A starts a transaction with B by sending message \(x \). Pomset \(\mathbb{P}_2 \) represents a scenario where the transaction is left open. Pomset \(\mathbb{P}_3 \) represents a scenario where the transaction is opened and eventually committed. Yet, B is uncertain whether message \(y \) is going to be sent or not while C may be left waiting for message \(z \) when B does not receive \(y \). However, depending on the application requirements, it may be the case that termination awareness is important for B and not for C because e.g., either C is not “wasting” resources or it is immaterial that such resources are left locked. To handle this limitation we introduce a novel termination condition, which allows to specify the subset of participants that should be able to identify when no further message can be exchanged.

Definition 6 (Termination soundness). A participant \(A \in P \) is termination-unaware in a system S if there exists an accepting configuration \((q; \bar{b}) \) reachable in S having a transition departing from \(q(A) \) that is labelled in \(L \).

A set of participants \(P' \subseteq P \) is termination-aware in a system S there is no \(A \in P \) that is termination-unaware in S. A language \(L \) over \(L \) is termination-sound for \(P' \subseteq P \) if \(L \) is safely realizable by a system for which \(P' \) is termination-aware. A set of pomsets \(R \) is termination-sound for \(P' \) if \(\mathbb{L}(R) \) is termination-sound for \(P' \).

Realizability and termination soundness can be established by analyzing verification conditions of the language. In [1] two closure conditions are introduced that entail weak and safe realizability. A word \(w \) over \(L \) is \(P \)-feasible for \(L \subseteq L^* \) if \(\forall A \in P : \exists w' \in L : w |_A = w' |_A \). A language \(L \) over the alphabet \(L \) has the closure condition CC2 when

\[
\mathbb{L} \supseteq \{ w \in L^* \mid w \text{ well-formed, complete, and } P-\text{feasible for } L \}
\]

\(^3\text{We stick with the terminology in [1] where closure conditions are not given specific names.}\)
Intuitively, CC2 entails that L is realizable by the set of participants performing the actions in L: if each participant cannot tell apart a trace w with one of its expected executions (i.e., those in L) then w must be in L or, in the terminology of [1], w is implied. Closure condition CC2 characterizes the class of weakly realizable languages over L.

Theorem 1 ([1]). A language L is weakly realizable if, and only if, L contains only well-formed and complete words and satisfies CC2.

The language of the set of pomsets $\{r_1, r_2\}$ of Fig. 1 is not closed under CC2. In fact, the well-formed and complete word

$$AB!x; AB?x; DB!y; DB?y; DC!y; DC?y; AC!x; AC?x \quad (1)$$

satisfies the conditions of CC2, because the projection of the word (1) on each participant equals the projection of a linearization of r_1, or of r_2, on the same participant. However, (1) is not in the language $L(R_1)$, because $AC?x$ must precede $DC?y$ in all the words obtained by the linearization of r_1, while in those obtained by a linearization of r_2, $DB?y$ must precede $AB?x$.

The realizability entailed by condition CC2 is “weak” because it does not rule out possibly deadlocking systems. Therefore, an additional closure condition, dubbed CC3, has been identified in [16, 1]. A language L over the alphabet has the closure condition CC3 when

$$\text{pref}(L) \supseteq \{w \in L^* \mid w \text{ well-formed and } P\text{-feasible for } \text{pref}(L)\}$$

where $\text{pref}(L)$ is the prefix closure of L. Basically, condition CC3 states that any (potentially partial) execution that cannot be told apart by any of the participants is a (partial) execution in L. And now the following result characterizes safe realizability.

Theorem 2 ([16, 1]). A language L is safe realizable if, and only if, L contains only well-formed and complete words and satisfies CC2 and CC3.

Once a language L is known to be realizable, we get a system $S(L) = (M_A)_{A \in P}$ realizing L by defining, for all $A \in P$

$$M_A = (\text{pref}(L | _A), \varepsilon, L | _A, \rightarrow)$$

where $w \rightarrow w.\ell$ if $w.\ell \in \text{pref}(L | _A)$. Then, in [1] the following result is shown.

Theorem 3 ([1]). If L is a weakly realizable language then $L(S(L)) = L$. Moreover, if L is safely realizable then $S(L)$ is deadlock-free.

We introduce a new verification condition for termination soundness. A participant $A \in P$ is **termination-unaware** for the language L over L if there exist $w, w' \in L$ such that $w | _A$ is a prefix of $w' | _A$ and the first symbol in $w' | _A$ after $w | _A$ is in L^\dagger. Given a set of participants $P' \subseteq P$, we say that L is P'-terminating when there is no $A \in P'$ termination-unaware for L. The language of the family of pomsets $\{r_3, r_4\}$ of Fig. 2 is $\{A\}$-terminating, but it is not $\{B\}$-terminating. In fact, after receiving the message $AB?x$, participant B cannot distinguish whether A terminates or will send $AB!y$; hence B ends up in a state where the input $AB?y$ is enabled. And likewise for C.

\[\text{Theorem in [1] describes a different condition, CC2', which is easier to implement and is equivalent to CC2 when in conjunction with CC3}\]
Theorem 4. Given $\mathcal{P}' \subseteq \mathcal{P}$, if \mathcal{L} is \mathcal{P}'-terminating and safely realizable then it is termination-sound for \mathcal{P}'.

Proof. The proof is trivial. Let $S(\mathcal{L})$ be the system obtained from the construction of Theorem 3. $S(\mathcal{L})$ is deadlock-free and $\mathcal{L} = \mathcal{L}(S(\mathcal{L}))$. Let $A \in \mathcal{P}'$, $w \in \mathcal{L}$, and s an accepting configuration reached in a run of S corresponding to w. For each $w' \in \mathcal{L}$ such that $w | A$ is prefix of $w' | A$, the first symbol in $w' | A$ after $w | A$ cannot be an input (since \mathcal{L} is \mathcal{P}'-terminating). Therefore, by construction of $S(\mathcal{L})$, there is no input transition departing from the local state of A in s. \qed

4 Pomset based verification conditions

We introduce a different approach to check realizability and sound termination of specifications, which does not require to explicitly compute the language of the family of pomsets. This allows us to avoid the combinatorial explosion due to interleavings. The main strategy is to provide alternative definitions of closures directly on pomsets which handle both intra- and inter-participant concurrency. Besides theoretical benefits, this yields a clear advantage for practitioners. In fact, design errors can be identified and confined in more abstract models, closer to the global specification than to traces of execution. Also, since the verification conditions are syntax-oblivious, since they require to analyze sets of pomsets, that does not require to explicitly compute the language of the family of pomsets. This allows us to avoid the combinatorial explosion due to interleavings. The main strategy is to provide alternative definitions of closures directly on pomsets which handle both intra- and inter-participant concurrency. Besides theoretical benefits, this yields a clear advantage for practitioners. In fact, design errors can be identified and confined in more abstract models, closer to the global specification than to traces of execution. Also, since the verification conditions are syntax-oblivious, since they require to analyze sets of pomsets, that provide a general framework to represent semantics of coordination models based on asynchronous message-passing. As discussed in Section 5 our conditions strictly entail the corresponding ones in Section 3.

Definition 7 (Closure). Let ρ be a function from \mathcal{P} to pomsets and $(r^A)_{A \in \mathcal{P}}$ be the tuple where $r^A = \rho(A) | A$ for all $A \in \mathcal{P}$. The inter-participant closure $\Box((r^A)_{A \in \mathcal{P}})$ is the set of all well-formed pomsets $\{\bigcup_{A \in \mathcal{P}} E_A, \leq_I \cup \bigcup_{A \in \mathcal{P}} \leq_A, \bigcup_{A \in \mathcal{P}} \lambda_A\}$ where $\leq_I \subseteq \{(e^A, e^B) \in E_A \times E_B, A, B \in \mathcal{P} | \lambda_A(e^A) = AB!m, \lambda_B(e^B) = AB?m\}$.

Informally, the inter-participant closure takes one pomset for every participant and generates all “acceptable” matches between output and input events. We use Fig. 3 and Fig. 4 to illustrate the inter-participant closure. The singleton $R^{(a)}$ contains one pomset that is the composition of two independent pomsets: $r^{(a)}_e$ and $r^{(a)}_\delta$. Intuitively, this represents two concurrent “threads” (hereafter left and right threads) that have no interdependencies. Let r^A be the projection of the single pomset in $R^{(a)}$ for $A \in \mathcal{P}$, then the inter-participant closure of $(r^A)_{A \in \mathcal{P}}$ consists of the two pomsets of Fig. 4, the one that uses the black and green dependencies, and the one that uses the black and red dependencies.

Definition 8. A pomset r is less permissive than pomset r' (or r' is more permissive than r, written $r \sqsubseteq r'$) when $E_r = E_{r'}$, $\lambda_r = \lambda_{r'}$, and $\leq_r \supseteq \leq_{r'}$.

Figure 2: A set of two pomsets that is not termination sound for B or C
Theorem 5. Let r be the cardinality of $\{\text{Lemma 1.} \, \text{If } r \subseteq r' \text{ then } \mathbb{L}(r) \subseteq \mathbb{L}(r')$.\\

Definition 9 (CC2-POM). A set of pomsets R over \mathcal{L} satisfies closure condition **CC2-POM** if for all tuples $(r^A)_{A \in \mathcal{P}}$ of pomsets of R, for every pomset $r \in \square((r^A)_{A \in \mathcal{P}})$, there exists $r' \in R$ such that $r \subseteq r'$.

Intuitively, Definition 9 requires that if all the possible executions of a pomset cannot be distinguished by any of the participants of R, then those executions must be part of the language of R. Theorem 5 below shows that CC2-POM entails CC2; its proof is based on “counting” the number of events with a certain label l preceding an event e in the order \leq_r of a pomset r: we write $\#_e^l(e)$ for such number (namely, $\#_e^l(e)$ is the cardinality of $\{e' \in \mathcal{E}_r \mid e' \leq_r e \wedge \lambda_r(e') = l\}$).

Theorem 5. If R satisfies **CC2-POM** then $\mathbb{L}(R)$ satisfies **CC2**.

Proof. Let w be a well-formed and complete word over \mathcal{L} that satisfies hypothesis of **CC2**: for every participant $A \in \mathcal{P}$ there exists $w^A \in \mathbb{L}(R)$ for which $w|_A = w^A|_A$. Then, for each $A \in \mathcal{P}$, there is a pomset $r^A \in R$ such that a linearization ℓ_A of r^A yields w^A. We can hence take the pomset

$$r = \left[\bigcup_{A \in \mathcal{P}} \mathcal{E}^A_{\ell_A}, \leq_I \bigcup_{A \in \mathcal{P}} \leq^A_{\ell_A}, \bigcup_{A \in \mathcal{P}} \lambda^A_{\ell_A} \right]$$

where

$$\leq_I = \bigcup_{B \neq A \in \mathcal{P}} \left\{ (e^A, e^B) \in \mathcal{E}^A_{\ell_A} \times \mathcal{E}^B_{\ell_B} \mid \lambda^A(e^A) = AB!m \text{ and } \lambda^B(e^B) = AB?m \text{ and } \#_{AB!m}^A(e^A) = \#_{AB?m}^B(e^B) \right\}$$

The pomset r is in $\square((r^A|_A)_{A \in \mathcal{P}})$, since it is well-formed and complete and \leq_I satisfies conditions of Definition 7. In fact, since w is well-formed and complete, all send and receive events have corresponding matching events. Also by construction, $w \in \mathbb{L}(r)$ and, for every A, $r^A \subseteq r^A|_A$. Finally, by **CC2-POM** there exists $r' \in R$ such that $r \subseteq r'$, therefore $w \in \mathbb{L}(r')$ hence $w \in \mathbb{L}(R)$. \hfill \Box
Fig. 3 provides an example of a family of pomsets that cannot be weakly implemented. An execution of this specification can be as follows:

1. the left thread of A executes A C!l₁ and A B!x
2. the right thread of B executes B C!r₂ and A B?x, “stealing” the message x generated by the left thread of A and meant for the left thread of B
3. the right thread of B executes B C!r₃.

This violates the constraint that event A B!r₁ must always precede event B C!r₃, which the specification imposes independently of the interleaved execution of the participants’ threads. Indeed, R[3] does not satisfy CC2-POM. In fact, there are two well-formed and complete pomsets that satisfy the hypothesis of CC2-POM: the pomset of Fig. 3 that uses the black and green dependencies, and the one that uses the black and red dependencies. Condition CC2-POM is violated because there is no pomset in R[3] that is more permissive than the pomset using the red dependencies.

The next condition requires to introduce the concept of prefix of a pomset r, which is a pomset r' on a subset of the events of r that preserves the order and labelling of r; formally (following [13])

Definition 10 (Prefix pomsets). A pomset r' = [E', ≤', λ'] is a prefix of pomset r = [E, ≤, λ] if there exists a label preserving injection φ : E' → E such that φ(≤') = ≤ ∩ (E × φ(E')).

We remark that an arbitrary sub-pomset satisfies the weaker condition φ(≤') = ≤ ∩ (E × φ(E')). Instead, φ(≤') = ≤ ∩ (E × φ(E')) prevents events in E \ φ(E') from preceding events in φ(E') and it is equivalent to say that for all e' ∈ E' if there is e ≤ φ(e') then there exists e'' ∈ E' such that φ(e'') = e and e'' ≤ e'.

Lemma 2. Let r be a pomset over L and w be a word in L*, w ∈ pref(L(r)) iff exists a prefix r' of r such that w ∈ L(r').

Definition 11 (CC3-POM). A set of pomsets R over L satisfies closure condition CC3-POM if for all tuples of pomsets (rₐ)ₐ∈P such that for every A rₐ is a prefix of a pomset rₐ ∈ R, and for every pomset r ∈ E then there is a pomset r' ∈ R and a prefix r' of r' such that r ⊆ r'.

Theorem 6. If R satisfies CC3-POM then L(R) satisfies CC3.

Proof. Let w be a word that satisfies hypothesis of CC3: for every participant A ∈ P, there exists a word wₐ ∈ A ∈ P (R) such that wₐ = wₐ | L(R). Therefore, there is a pomset rₐ prefix of a pomset rₐ ∈ R such that wₐ ∈ L(rₐ) and let rₐ be one of the linearizations of rₐ that corresponds to wₐ. Define

\[\tilde{r} = \bigcup_{A \in P} \mathcal{E}_{\mu_{r_a}} \cup \bigcup_{A \in P} \{ \lambda_{\nu_{r_a}} \}, \]

where

\[\leq_l = \bigcup_{B \neq A \in P} \left\{ \left(e^A, e^B \right) \in \mathcal{E}_{\mu_{r_a}} \times \mathcal{E}_{\mu_{r_b}} \mid \lambda_{\nu_{r_a}}(e^A) = A B! m \text{ and } \lambda_{\nu_{r_b}}(e^B) = A B? m \right\} \]

The pomset \(\tilde{r} \) is in [E | A ∈ P], since it is well-formed and \(\leq_l \) satisfies conditions of Definition 7. In fact, since w is well-formed, all receives have matching sends. Also by construction, w ∈ L(\(\tilde{r} \)) and, for every A, rₐ | L(\(\tilde{r} \)) \ A. Hence, by CC3-POM there exists r ∈ R and a prefix r' of r such that r ⊆ r', therefore w ∈ L(r') and therefore w ∈ pref(L(R)). \(\square \)
Given a set of participants P.

Theorem 7. Let ϕ be a common choice. The family of pomsets R does not coordinate to achieve this behaviour; this makes it impossible for them to distributively commit to a common choice. The family of pomsets R that there is $r \leq \min \phi$.

In fact, let r be an unaware for R. This makes it impossible for them to distributively commit to a common choice.

Figure 5: The language of $\{r_5, r_6\}$ cannot be implemented since A and C do not coordinate to commit to a common choice.

Figure 6: The set $R_0 = \{r_5, r_6\}$ is not termination sound for B.

The family of pomsets $R = \{r_5, r_6\}$ of Fig. 5 exemplifies a common obstacle for safe realizability. Here, participants A and C should both send the message x or both send the message y. However, A and C do not coordinate to achieve this behaviour; this makes it impossible for them to distributively commit to a common choice. The family of pomsets R does not satisfy $CC3-POM$. In fact, pomset r_5 satisfies hypothesis of $CC3-POM$ (using r_5 for C and r_5 for both A and B), however there is no pomset in R whose prefix is more permissive that r_5.

Like for the closure conditions, we lift the sufficient condition for termination soundness to pomsets.

Definition 12 (Terminating pomsets). A participant $A \in P$ is termination-unaware for a set of pomsets R if there are $r, r' \in R$, and a label-preserving injection $\phi : \mathcal{E}_{r_A} \to \mathcal{E}_{r'_A}$ such that $\leq = \phi(\leq_{r_A}) \cup \leq_{r'_A}$ is a partial order and

$$
\min \leq(\mathcal{E}_{r_A}) \subseteq \phi(\min \leq_{r_A}(\mathcal{E}_{r_A})) \quad \text{and} \quad \min \leq(\mathcal{E}_{r_A} \setminus \phi(\mathcal{E}_{r_A})) \cap L^2 \neq \emptyset
$$

Given a set of participants $P' \subseteq P$, we say that R is P'-terminating when there is no $A \in P'$ termination-unaware for R.

We use Fig. 5 to describe termination awareness. B is termination-unaware for the set of pomsets R_0. In fact, let $\phi : \mathcal{E}_{r_5_{B_5}} \to \mathcal{E}_{r_6_{B_6}}$ be the only possible label-preserving injection, then $\leq = \phi(\leq_{r_5_{B_5}}) \cup \leq_{r_6_{B_6}}$ is the partial order in Fig. 5(c), and $\min \leq(\mathcal{E}_{r_5_{B_5}} \setminus \phi(\mathcal{E}_{r_6_{B_6}})) = \{AB?w\}$ is not disjoint from L^2. Intuitively, \leq represents the intersection of the languages of the two pomsets $r_5 |_B$ and $r_6 |_B$. Notice also that neither $r_5 |_B \sqsubseteq r_5 |_B$ or $r_5 |_B \sqsubseteq r_6 |_B$.

Theorem 7. Given $P' \subseteq P$, if R is P'-terminating then $L(R)$ is P'-terminating.

Proof. Given a word $w \in L(R)$, there is a pomset $r \in R$ such that $w \in L(R)$. Let $A \in P'$ and assume that there is $w' \in L(R)$ such that $w |_A$ is a prefix of $w' |_A$. Therefore, there is a pomset $r' \in R$ such...
Please define \textit{\textbf{author}} running

that $w' |_A \in \mathbb{L}(r' |_A)$. Let e_1, \ldots, e_n and $e'_1, \ldots, e'_{n'}$, with $n < n'$, be the linearizations of \leq_r and $\leq_{r'}$ respectively for the world w and w' respectively. Let ϕ be the injection that maps e_i to e'_i for $1 \leq i \leq n$, then $\leq = \phi(\leq_{r_A}) \cup \leq_{r'_A}$ is a partial order. Therefore $\text{min}_=(\mathcal{E}_{r_A} \backslash \phi(\mathcal{E}_{r_A})) \cap \mathcal{L}^2 = \emptyset$ since R is T'-terminating, thus the first symbol of w' after w cannot be an input. \hfill \square

5 Discussion on the pomset based verification conditions

If a pomset is thought of as the specification of a possible scenario of a system, a practical advantage of using the conditions of Section 4 is that problems can be discovered at design-time. This permits to easily isolate the problematic scenarios of a specification even if they share multiple traces with non-problematic scenarios. Moreover, these conditions avoid the explicit computation of the language of the family of pomsets. This can lead to combinatorial explosion due to interleavings. For example, both pomsets R_{a_0} and R_{a_1} of Fig. 3 have 32 different linearizations, each one consisting of 8 events. Therefore the language of R_{a_0} consists of $32 \times 32 = 2^{18}$ words. Directly analyzing the inter-participant closure in Fig. 4 has clear advantages.

Checking conditions of Section 4 is in general exponentially expensive due to two reasons: the combinatorial explosion of the inter-participant closure and the need of finding a graph isomorphism to check relation \subseteq between pomsets and to prove the existence of the label preserving injection ϕ. In both cases, this complexity depends on the presence of multiple and independent instances of the same action.

Definition 13. Let r be a pomset over \mathcal{L}. An action $l \in \mathcal{L}$ concurrently repeats in r if there exist $e, e' \in \mathcal{E}_r$ such that $e \neq e'$, $\lambda_r(e) = \lambda_r(e') = l$, and neither $e \leq_r e'$ or $e' \leq_r e$.

For every non concurrently repeated action there is only one linearization of the inter-participant dependencies. Also, for events involving non concurrently repeated actions it is straightforward to find a graph isomorphism, since there is only one possible label and order preserving injection between the pomsets. This permits to check conditions of Section 4 in polynomial time with respect to the number of events if there are no concurrent repetitions.

In practice, the presence of actions that concurrently repeat is limited. In fact, specification formalisms usually impose conditions that syntactically avoid this issue (e.g. see well-forkedness of [23] or the even more restrictive conditions of e.g., [12]) because sending the same message in two independent threads may “confuse” receivers making it hard (or impossible) to decide which receiving thread should consume the message, leading to coordination problems.

We remark that the conditions of Section 4 strictly entail the corresponding ones in Section 3. We show a counterexample for CC2-POM only, since the same reasoning applies for the other condition. Consider

![Figure 7: A set of pomsets language-equivalent to the pomset with red and black dependencies of Fig. 4, but explicitly interleaves the events B C!2 and B C!r2 (cyan dependencies).](image)
the set $R_4 = \{ r_4^{\text{red}}, r_4^{\text{green}} \}$, where r_4^{red} and r_4^{green} respectively are the pomset with red dependencies and the pomset with green dependencies of Figure 4. Then, R_4 satisfies CC2-POM, since it contains all pomsets that satisfy hypothesis of the closure condition, therefore by Theorem 5 its language satisfies CC2. Consider the set $R_7 = \{ r_7^{\text{a}}, r_7^{\text{b}}, r_4^{\text{green}} \}$, where r_7^{a} and r_7^{b} are the two pomsets of Figure 7. Notice that r_7^{a} and r_7^{b} are equivalent to r_4^{red}, with the exception of the dependency between BC!2 and BC!r2. Since r_7^{a} and r_7^{b} have opposite orders between these two events, the union of their languages is equal to the language of r_4^{red}. Therefore the language of R_7 is equal to the language of R_4, hence it also satisfies CC2. However, R_7 does not satisfy CC2-POM. In fact, the pomset r_4^{red} satisfies hypothesis of CC2-POM, but there is not pomset in R_7 that is more permissive than r_4^{red}.

6 Related work

The surge of message-passing applications in industry is revamping the interest for software engineering methodologies supporting designers and developers called to realise communication-centred software. In this context, realizability of global specifications is of concern for both practical and theoretical reasons. Our approach can support choreography languages (e.g. [23]). These specifications yield at the same time (i) concrete support to scenario-based development, (ii) rigorous semantics in terms of partial order of communication events that enable the use of algorithms and tools to reason about and verify communicating applications, and (iii) a simple graphical syntax that supports the intuition and makes it easy to practitioners to master the specification without needing to delve into the underlying theory.

A paradigmatic class of such formalisms are message-sequence charts (MSCs) [22, 9, 18, 11, 10, 2]). A mechanism to statically detect realizability in MSCs is proposed in [3]. The notions of non-local choices and of termination considered in [3] are less than than our verification conditions since intra-participant concurrency is not allowed and termination awareness (Definition 6) is not enforced. In the context of choreographies, several works (e.g., [4, 7, 12]) defined constraints to guarantee the soundness of the projections of global specifications. These approaches address the problem for specific languages, thus these conditions often use information on the syntactical structure of the specification. Instead, conditions presented in Section 4 are syntax-oblivious and they make minimal assumptions on the communication model. Therefore, our results can be applied to a wide range of languages.

The closure conditions reviewed in Section 5 have been initially introduced in [11] to study realizability of MSC. The replacement in the framework of MSC with pomsets is technically straightforward and yields more general results, since it enables multi-threaded participants. In Section [3] to avoid systems where participants can get stuck due to the termination of some partners, we introduce a new flexible termination condition and demonstrate sufficient conditions that guarantee it. Then, we introduce new verification conditions for the distributed realizability of pomsets, which can tame the combinatorial explosion due to the interleaving of communication events.

A problem related to realizability is satisfiability of logical formulae. Model checkers use temporal logic, i.e. LTL, to formalize system specifications. A general problem that must be faced is that formal specifications can be wrong as their implementations. For instance, if a formula is unsatisfiable, then the specification is probably incorrect. Similarly to realizability, the problem of satisfiability of a temporal formula [20] allows to demonstrate that there exists an implementation that meets the specification.
7 Concluding remarks

We introduced and studied conditions for the realizability of pomsets, providing verification conditions for realizability of global specifications that are syntax-oblivious and avoid the combinatorial explosion due to interleaving. Also, we introduced a new flexible termination condition and demonstrated sufficient conditions that guarantee it.

There are some open questions to address. Pomset semantics of recursive processes is infinite, which precludes to directly use these results for global specifications that have loops. In [5] pomsets were used in combination with proved transition systems to give an non-interleaving semantics of CCS; basically, given a sequence of transitions $p \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_n} q$ between two CCS processes p and q, a pomset r can be derived from a proved transition system so that r represents the equivalence class of traces between p and q “compatible” with traces labelled $\alpha_1, \ldots, \alpha_n$. This work can help us to generalise our results to infinite computations.

Realizability of high-level MSCs has been addressed in [16], but the verification conditions are not syntax-oblivious. The conditions of Section 4 are sufficient but not necessary conditions for realizability. This is due to the fact that the same semantics (i.e., set of traces) can be expressed using different sets of pomsets by exploring different interleavings. We do not know if a notion of normal forms for families of pomsets can be used to guarantee that our conditions are necessary. We conjecture that our semantics could be applied to other coordination paradigms such as order-preserving asynchronous message-passing (as the original semantics of CFSMs), synchronous communications, or tuple based coordination. We leave the exploration of the robustness of our framework as future work. Finally, we plan to extend ChorGram [15], a tool we are currently developing, to implement our theoretical framework and apply it to the analysis of global specifications.

References

